

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting your data from Webflow. If you're dealing with a CMS Collection, navigate to the CMS Collections Panel, select the desired collection, and use the 'Export' option. This will generate a CSV file containing your collection data, which you can download to your local machine.
Write a script in a language like Python to parse the CSV file. Use a library such as `csv` in Python to open and read the contents of the file. This script will convert each row of the CSV into a format suitable for insertion into Redis.
Install and set up a Redis server on your local machine or on a remote server where you want to store your data. Ensure that Redis is running and accessible from your environment. Use `redis-cli` to verify the connection by executing a simple command like `PING`.
Depending on the programming language you are using, install a Redis client library. For Python, you can use `redis-py`. Install it via pip with the command `pip install redis`. This library will allow your script to interact with the Redis database.
In your script, establish a connection to the Redis server using the Redis client library. Specify the host, port, and any authentication details if required. For example, using `redis-py`, you can connect with:
```python
import redis
client = redis.Redis(host='localhost', port=6379, db=0)
```
With the CSV data parsed, transform each row into a Redis-compatible data structure. Decide on a data structure in Redis, such as a hash or a list, to store the data. Use the `set`, `hset`, or `rpush` methods to insert data into Redis. For example, to store data as a hash:
```python
for row in csv_data:
client.hset(name=row['id'], mapping=row)
```
After inserting the data, verify that the data has been correctly stored in Redis. Use `redis-cli` or your script to retrieve and check the data. Ensure that all fields are correctly inserted by running commands such as `HGETALL` for hashes or `LRANGE` for lists. This step ensures the integrity and completeness of the data transfer.
By following these steps, you can effectively move data from Webflow to Redis without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Webflow is basically a great platform for web designs that can build production-ready experiences without code. Webflow is the leading platform to design, and launch powerful websites visually that enables you to rapidly design and build production-scale responsive websites and it is also an popular platform of CMS, and hosting provider perfect for building production websites and prototypes without coding. Webflow is an overall innovative tool to simplify the lives of designers and teams all around and helping them work faster and deliver high quality websites.
Webflow's API provides access to a wide range of data related to websites built on the Webflow platform. The following are the categories of data that can be accessed through the API:
1. Site data: This includes information about the website, such as its name, URL, and settings.
2. Collection data: This includes data related to collections, such as the name, description, and fields.
3. Item data: This includes data related to individual items within a collection, such as the item's ID, name, and field values.
4. Asset data: This includes data related to assets used on the website, such as images, videos, and files.
5. Form data: This includes data related to forms on the website, such as form submissions and form fields.
6. E-commerce data: This includes data related to e-commerce functionality on the website, such as products, orders, and customers.
7. CMS data: This includes data related to the content management system used on the website, such as templates, pages, and content.
Overall, the Webflow API provides access to a wide range of data that can be used to build custom integrations and applications that interact with Webflow websites.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: