Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by accessing the Intercom data using their API. Intercom provides RESTful APIs that allow you to fetch data like users, conversations, and contacts. You will need to generate an access token from the Intercom Developer Hub for authentication. Use this token to send HTTP requests to Intercom's endpoints and retrieve the data you need to move.
Prepare your AWS environment to interact with DynamoDB. Create a new IAM user with programmatic access that has permissions to access DynamoDB. Install and configure the AWS Command Line Interface (CLI) on your local machine or server. You can do this by running `aws configure` and entering your AWS credentials and preferred region.
Decide on the schema for your DynamoDB table based on the structure of the data you are pulling from Intercom. Define the primary key (partition key and optionally a sort key) that will uniquely identify each item in the table. Consider additional attributes you may need for querying and filtering the data later.
Use the AWS Management Console, AWS CLI, or AWS SDKs to create a new DynamoDB table according to the schema you designed. Ensure that you have adequate read and write capacity if using provisioned throughput, or consider enabling on-demand mode for variable workloads.
Write a script or program in a language like Python, Node.js, or Java to extract data from Intercom's API. Use this script to parse the JSON response from the API and transform it into a format that matches your DynamoDB table schema, ensuring data types and structures are compatible.
In the same script, use AWS SDK for your chosen programming language to insert the transformed data into your DynamoDB table. You can use batch write operations to insert multiple items at once, which is more efficient than inserting one item at a time. Handle any errors or exceptions that may occur during the write process.
After loading the data into DynamoDB, verify its integrity to ensure successful migration. Use the AWS Management Console, AWS CLI, or query the table using AWS SDKs to check that all data has been accurately transferred and is accessible as expected. Perform spot checks to compare sample data between Intercom and DynamoDB.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Intercom is a customer messaging platform that helps businesses communicate with their customers in a personalized and efficient way. It offers a suite of tools that enable businesses to engage with their customers through targeted messaging, live chat, and email campaigns. Intercom also provides customer data and analytics to help businesses understand their customers better and make informed decisions. The platform is designed to help businesses build strong relationships with their customers, increase customer satisfaction, and ultimately drive growth. Intercom is used by thousands of businesses worldwide, including Shopify, Atlassian, and New Relic.
Intercom's API provides access to a wide range of data related to customer communication and engagement. The following are the categories of data that can be accessed through Intercom's API:
1. Users: Information about individual users, including their name, email address, and user ID.
2. Conversations: Data related to customer conversations, including the conversation ID, message content, and conversation status.
3. Companies: Information about companies that use Intercom, including company name, ID, and size.
4. Tags: Data related to tags assigned to users and conversations, including tag name and ID.
5. Segments: Information about user segments, including segment name, ID, and criteria.
6. Events: Data related to user events, including event name, ID, and timestamp.
7. Custom attributes: Information about custom attributes assigned to users, including attribute name, value, and type.
8. Teammates: Data related to Intercom team members, including name, email address, and role.
Overall, Intercom's API provides a comprehensive set of data that can be used to analyze customer behavior, improve communication strategies, and enhance overall customer engagement.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





