

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by setting up a Google Cloud Project. Go to the Google Cloud Console, create a new project, and make sure to enable billing. This project will host your Pub/Sub service and any associated resources.
Navigate to the API & Services dashboard in your Google Cloud Console. Enable the Admin SDK API (necessary for accessing Google Directory data) and the Pub/Sub API (for message publication).
Create a service account within your Google Cloud Project. Go to IAM & Admin > Service Accounts and create a new one. Assign it roles that allow access to both the Google Directory and Pub/Sub services, such as ‘Directory Read-Only’ and ‘Pub/Sub Publisher’.
Download the JSON key for your service account. This key will be used to authenticate your API requests. Store it securely, as it contains sensitive information necessary for programmatic access to your services.
Utilize the Admin SDK to access data from Google Directory. Write a script (using a language like Python) that authenticates using the service account key and queries the desired directory data. Use the `google-auth` library for authentication and the `google-api-python-client` for interacting with the Admin SDK.
Once you have fetched the data from Google Directory, publish it to a Pub/Sub topic. First, create a Pub/Sub topic in your Google Cloud Console. Then, modify your script to send the retrieved data as messages to this topic using the `google-cloud-pubsub` library. Ensure your service account has the necessary permissions to publish messages.
To ensure the data has been transferred correctly, set up a simple subscriber client. This client can be written in the same script or a separate one that subscribes to your topic and reads messages. Verify that the messages received match the data sent from Google Directory, ensuring successful data movement.
By following these steps, you can directly move data from Google Directory to Google Pub/Sub using Google’s native APIs and services, without the need for third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Google (Workspace) Directory is, simply put, a user management system for Google Workspace. It allows IT admins to manage users’ access, facilitates and governs user sign-ons, and, ultimately, is meant to enable users to sign in to multiple Google services through one Google identity. Other features include the ability to monitor devices connected to a business’s domain, manage organizations’ structures, audit applications to which users have approved access, and revoke unauthorized apps.
Google Directory's API provides access to a wide range of data related to the Google Directory service. The API allows developers to retrieve information about various categories of data, including:
- Directory listings: Information about businesses, organizations, and other entities listed in the Google Directory.
- Categories: The different categories and subcategories used to organize listings in the directory.
- Reviews and ratings: User-generated reviews and ratings for businesses and other entities listed in the directory.
- Contact information: Phone numbers, addresses, and other contact information for businesses and organizations listed in the directory.
- Images and videos: Images and videos associated with listings in the directory.
- User profiles: Information about users who have contributed reviews and ratings to the directory.
Overall, the Google Directory API provides developers with a wealth of data that can be used to build applications and services that leverage the information contained in the directory.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





