

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
To begin, obtain your ChartMogul API credentials. You'll need the Account Token and Secret Key to authenticate API requests. ChartMogul provides a RESTful API that allows you to retrieve data. Familiarize yourself with the API documentation to understand the available endpoints and data formats.
Use a programming language like Python to make HTTP GET requests to the ChartMogul API. For instance, you can use the `requests` library in Python to fetch data. Start with small datasets to ensure your requests are working correctly. Handle pagination if your data spans multiple pages by checking for `has_more` flag and using the `page` parameter in your requests.
Once you retrieve the data, parse the JSON responses. You may need to transform the data into a format suitable for Kafka, such as converting nested JSON structures into flat key-value pairs. Use libraries like `json` in Python to handle JSON data. Ensure that you properly manage data types and handle any edge cases, such as null values.
Install Apache Kafka and set up a Kafka broker on your local machine or server. Then, use a Kafka client library in your chosen programming language to create a Kafka producer. For Python, the `kafka-python` library is a popular choice. Initialize the producer with the necessary configurations, such as the bootstrap server address.
With the Kafka producer set up, send the transformed data to a Kafka topic. Choose a topic name that reflects the nature of the data, such as `chartmogul_data`. Use the `send` method to publish messages to this topic. Ensure you handle exceptions and retries to manage network issues or Kafka downtime.
Continuously monitor the data flow from ChartMogul to Kafka to ensure there are no interruptions or data loss. Implement logging in your script to capture successful data retrieval and publishing. Additionally, consider setting up alerts for any anomalies or failures in the data pipeline.
Finally, automate the process to run at regular intervals using a task scheduler like cron (Linux) or Task Scheduler (Windows). This automation ensures that data is consistently moved from ChartMogul to Kafka without manual intervention. Test the entire workflow to confirm it operates smoothly before deploying it in a production environment.
By following these steps, you can efficiently move data from ChartMogul to Kafka without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
ChartMogul is an analytics platform to assist you run your subscription business. You get a complete overview of your global subscriber base; MRR, ARPU, ASP, churn and LTV are presented in a beautiful and easy to use dashboard. ChartMogul is a real time reporting and analytics solution for subscription businesses who use Stripe, PayPal, Chargify, Braintree, or Recurly. ChartMogul is an analytics platform to assist you run your subscription business. ChartMogul is a subscription analytics tool that provides real-time reporting on the most critical metrics.
Chartmogul's API provides access to a wide range of data related to subscription businesses. The following are the categories of data that can be accessed through Chartmogul's API:
1. Customer data: This includes information about customers such as their name, email address, and billing information.
2. Subscription data: This includes information about the subscription plans that customers have signed up for, including the plan name, price, and billing frequency.
3. Revenue data: This includes information about the revenue generated by the subscription business, including monthly recurring revenue (MRR), annual recurring revenue (ARR), and total revenue.
4. Churn data: This includes information about customer churn, including the number of customers who have cancelled their subscriptions and the reasons for cancellation.
5. Usage data: This includes information about how customers are using the subscription service, including the number of logins, the amount of data used, and the features that are being used.
6. Financial data: This includes information about the financial performance of the subscription business, including expenses, profits, and cash flow.
Overall, Chartmogul's API provides a comprehensive set of data that can be used to analyze and optimize subscription businesses.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: